

Laser Safety Instructions 2022

Outline

- 1. Why LASER safety instructions?
- 2. What is a LASER?
- 3. Why is LASER light dangerous?
- 4. Important terms (DIN EN 60825-1):
 - LASER classes
 - Maximum Permissible Exposure
 - Nominal Hazard Zones
- 5. Safety precautions

1. Why Laser Safety Instructions?

LASER Accident Statistics

Total number of incidents 1345

... approx. 80 % physical injuries (eyes, 70%; skin 10%)

LASER Accident Statistics

Total number of incidents 1345

... approx. 80 % physical injuries (eyes, 70%; skin 10%)

Top 14 Accidents

Rockwell Laser Industry's top 14 Reported Causes of Laser Related Injuries

- 1. Unanticipated eye exposure during alignment.
- 2. Misaligned optics and upwardly directed beams.
- 3. Available laser eye protection was not used.
- 4. Equipment malfunction.
- 5. Improper method of handling high voltage.
- 6. Intentional exposure of unprotected persons.
- 7. Operators unfamiliar with laser equipment.
- 8. No protection provided for associated hazards.
- 9. Improper restoration of equipment following servicing.
- 10.Incorrect eyewear selection and/or eyewear failure.
- 11. Accidental eye/skin exposure during normal use.
- 12.Inhalation of laser generated fume & viewing of secondary radiation (UV, blue light).
- 13.Laser ignition of fires.
- 14. Photochemical eye or skin exposure.

Top 14 Accidents

Rockwell Laser Industry's top 14 Reported Causes of Laser Related Injuries

- 1. Unanticipated eye exposure during alignment.
- 2. Misaligned optics and upwardly directed beams.
- 3. Available laser eye protection was not used.
- 4. Equipment malfunction.
- 5. Improper method of handling high voltage.
- 6. Intentional exposure of unprotected persons.
- 7. Operators unfamiliar with laser equipment.
- 8. No protection provided for associated hazards.
- 9. Improper restoration of equipment following servicing.
- 10.Incorrect eyewear selection and/or eyewear failure.
- 11. Accidental eye/skin exposure during normal use.
- 12.Inhalation of laser generated fume & viewing of secondary radiation (UV, blue light).
- 13.Laser ignition of fires.
- 14. Photochemical eye or skin exposure.

The Teaching and Research Environment

100% Protection?

- Not possible to have industrial safety levels fully enclosed systems
- Risk should be As Low As Reasonably Achievable (ALARA principle)

Multi user access

- There can be more than one laser in use in the lab
- There can be more than one wavelength in use at one time

Versatile Systems

- Changing wavelength
- Re-alignments
- Repairs

Safety Awareness is CRUCIAL!

2. What is a LASER?

LASER: Working Principle

Light Amplification by Stimulated Emission of Radition

LASER media:

Solids such as Nd:YAG, Ti:Sapphire, Diodes **Liquids** such as organic dyes **Gases** such as He-Ne, Ar-Kr, Excimer

E1: Lower Energy State, E2: Higher Energy State

LASER: Working Principle

Light Amplification by Stimulated Emission of Radition

LASER

LASER media:

Solids such as Nd:YAG, Ti:Sapphire, Diodes **Liquids** such as organic dyes **Gases** such as He-Ne, Ar-Kr, Excimer

LASER modes:

Continuous Wave (> 0.25 s) Pulsed (> 1 μ s to 0,25 s) Giant pulsed (1 μ s to 1 ns) Modelocked (< 1 ns)

LASER light ...

... is almost monochromatic

... is highly collimated

... extremely intense

3. Why is LASER Light Dangerous?

Anatomy of the Eye

Hazard: Light Bulb vs. LASER

Intensity ratio at retina: $\frac{I_{\text{Laser}}}{I_{\text{Bulb}}} = 2,1 \cdot 10^6$

Laser Hazards of the Eye

Laser Hazards of the Skin

All high power lasers can cause skin burns!

Ultra Violet radiation (UV): is a particular source of danger even at low power

Ultra Violet Sources in the Lab: include Lasers, e.g. optical parametric amplifier (OPA) and UV lamps e.g. xenon Lamps

Effects of exposure on skin

- mild erythema (sunburn)
- accelerated skin ageing
- skin cancer.
- ■UV C (180-280 nm) Absorbed in Ozone layer
- ■UV B (280-315 nm) Deep strata of skin at risk
- •UV A (315-400 nm) Tanning, Skin at risk

4. Important Terms

Laser Classes

Maximum Permissible Exposure

Nominal Hazard Zones

Laser Classes

$$1 \rightarrow 1M \rightarrow 2 \rightarrow 2M \rightarrow 3R \rightarrow 3B \rightarrow 4$$

Increasing Hazard

Direct exposure hazardous (2, 2M, 3R, 3B, 4)

Specular viewing hazardous (2, 2M, 3R, 3B, 4)

Diffusive reflections hazardous (3R, 3B, 4)

cp.: **DIN EN 60825-1 / VDE 0837-1**

Laser Class 1 & 1M (Eye-Safe)

$$302,5 \text{ nm} \le \lambda \le 4000 \text{ nm}$$

- Incapable of producing damaging radiation levels
- No precautions required
- No labeling obligation
- Laser of any class having been completely enclosed so that no hazardous radiation can escape and cause injury

- Pupil of the eye reduces potential intensity
- There is the potential for hazardous exposure if optical viewing aids are used

Laser Class 2 & 2M

LASER RADIATION
DO NOT STARE INTO THE BEAM
OR VIEW DIRECTLY WITH
OPTICAL INSTRUMENTS
CLASS 2M LASER PRODUCT

$$P < 1.0 \text{ mW}$$
 $\emptyset > 7.0 \text{ mm}$

$$400 \text{ nm} \le \lambda \le 700 \text{ nm}$$

- Only hazardous if one stare directly into the beam (> 0,25 s)
- No Precaution required:
 Aversion reaction / eyelid
 closure reflex
- Safety instructions required

- Pupil of the eye reduces potential intensity
- There is the potential for hazardous exposure if optical viewing aids are used

Laser Class 3R & 3B

LASER RADIATION
AVOID DIRECT
EYE EXPOSURE
CLASS 3R LASER PRODUCT

 $P_{\text{Vis}} < 5.0 \text{ mW}$

CAUTION - CLASS 3B LASER RADIATION WHEN OPEN. AVOID EXPOSURE TO BEAM

P < 500,0 mW

 $302,5 \text{ nm} \le \lambda \le 1 \text{ mm}$

- Direct look into beam is hazardous
- Direct beam exposure should be very unlikely
- Precaution: Adequate eye protection
- Safety instructions required

- Exposure of eye and skin is hazardous
- Can cause fire
- Precaution: Laser goggles and safety gloves

Laser Class 4

P > 500,0 mW

- Will cause severe eye damage and burn the skin.
- Even diffuse reflections can cause retinal injuries.
- Can cause fire and explosions
- Direct beam exposure should be very unlikely
- Precaution: Laser alignment googles only for $P < 100 \, \mathrm{W}$, else always safety goggles
- Safety instructions required

Maximum Permissible Exposure (MPE)

- The MPE is the highest level of radiation to which a person can be exposed without hazardous effects.
- The MPE is specified in W/m² for CW lasers and in J/m² for pulsed lasers. The value depends on wavelength, exposure duration and pulse repetition frequency.
- Exposure to radiation levels in excess of the MPE may result in adverse biological effects, such as injury to the skin and/or eyes.

Example: CW laser, $400 \text{ nm} \le \lambda \le 700 \text{ mm}$, duration 0,25 s:

MPE =
$$25.6 \frac{W}{m^2} = 3.9 \text{ mW/pupil area}$$

Nominal Hazard Zone (NHZ)

- The NHZ is the location around the laser within which a person can be exposed to radiation in excess of the MPE.
- When Class 3b and 4 lasers are unenclosed, the Laser Safety Officer must establish a NHZ.
- People may be injured if they are within the perimeter of this zone while the laser is in operation.

5. Safety Precautions

Three Lines of Defence

1. Engineering Controls

- Design the experiment/lab in such a way that dangerous exposure cannot happen. Reduce power during alignment
- Use beam enclosures and place beam blocks where possible
- Ensure all optics and mounts are securely fixed to optical table. Many incidents happen with an accidentally deflected beam

Use a designated area with interlocks and warning lights on the

entrances

2. Administrative Controls

- Laser Safety Training
- Designated Areas
- Good Signage

3. Personal Protection

- Safety Eye wear, Protective clothing
- Awareness and good sense
 - do I need to be here?
 - what are others in the laboratory doing?

Laser Areas and Operation Instructions at iBiOs

Laser Areas and Operation Instructions at iBiOs

Personal Protective Equipment for Eyes

- PPE is not required for class 2 or 3R lasers unless intentional direct viewing > 0.25 seconds is necessary.
- PPE for eyes exposed to Class 3B or 4 lasers is mandatory.
 Eyewear with side protection is best. Consider these factors when selecting eyewear:
 - Optical Density (OD) of the eyewear
 - Laser Power and/or pulse energy
 - Laser Wavelength(s)
 - Exposure time criteria
 - Maximum Permissible Exposure (MPE)
 - Safety or alignment goggles

Choosing the Right Safety Goggles

Schutz- stufe Scale number	Maximaler spektraler Trans- missionsgrad bei den Laser- wellenlängen Maximum spectral trans- mittance for laser wavelength	Maximale Leistungs- (E) und/oder Energiedichte (H) im Wellenlängenbereich Maximum power (E) and energy (H) density in the wavelength range									
		180 nm 315 nm			> 315 nm> 1400 nm			> 1400 nm 1000 μm			
number		Für Prüfbedingung For test condition / Impulsdauer in s									
		D >3·10 ⁴	I,R 10 ⁻⁹ bis 3 · 10 ⁴	M < 10 ⁻⁹	D > 5·10 ⁻⁴	I,R 10 ⁻⁹ bis 5 · 10 ⁻⁴	M < 10 ⁻⁹	D >0,1	I,R 10 ⁻⁹ bis 0,1	M < 10 ⁻⁹	
	$ au(\lambda)$	E _D W/m²	H _{I,R} J/m²	E _M W/m²	$\frac{E_D}{W/m^2}$	H _{I,R} J/m²	H _M J/m²	E_{D} W/m ²	H _{I,R} J/m²	E _M W/m²	
L1	10 ⁻¹	0,01	3·10 ²	3·10 ¹¹	10 ²	0,05	1,5·10 ⁻³	104	10 ³	10 ¹²	
L2	10-2	0,1	3·10³	3·10 ¹²	10 ³	0,5	1,5·10 ⁻²	105	104	10 ¹³	
L3	10 ⁻³	1	3.104	3·10 ¹³	104	5	0,15	10 ⁶	105	1014	
L4	10-4	10	3.105	3·10 ¹⁴	105	50	1,5	10 ⁷	10 ⁶	10 ¹⁵	
L5	10 ⁻⁵	100	3·10 ⁶	3·10 ¹⁵	10 ⁶	5·10 ²	15	108	10 ⁷	10 ¹⁶	
L6	10 ⁻⁶	10 ³	3·10 ⁷	3·10 ¹⁶	10 ⁷	5·10 ³	1,5·10 ²	109	108	10 ¹⁷	
L7	10 ⁻⁷	104	3.108	3·10 ¹⁷	108	5.104	1,5·10 ³	10 ¹⁰	10 ⁹	10 ¹⁸	
L8	10 ⁻⁸	105	3·10 ⁹	3·10 ¹⁸	109	5·10 ⁵	1,5.104	1011	10 ¹⁰	10 ¹⁹	
L9	10 ⁻⁹	10 ⁶	3·10 ¹⁰	3·10 ¹⁹	10 ¹⁰	5·10 ⁶	1,5·10 ⁵	10 ¹²	1011	10 ²⁰	
L10	10-10	10 ⁷	3·10 ¹¹	3·10 ²⁰	1011	5·10 ⁷	1,5·10 ⁶	10 ¹³	10 ¹²	10 ²¹	

Reference: EN 207 Tab. B.1.

Source: "Guide to Laser Safety", LaserVision GmbH

Choosing the Right Alignment Goggles

Schutzstufe nach DIN EN 208 Scale number acc. to EN 208	Dauerstrichlaser und Impulslaser mit einer Impulslänge > 2 · 10 ⁻⁴ s Maximale Laserleistung in W CW lasers and pulsed lasers with a pulse length of > 2 · 10 ⁻⁴ s Max. laser power in W	gepulste Laser mit einer Impulslänge > 10 ⁻⁹ – 10 ⁻⁴ s Maximale Impulsenergie in J Pulsed lasers with a pulse length > 10 ⁻⁹ – 10 ⁻⁴ s Max. pulse energy in J
R1	0,01 W	2 · 10 ⁻⁶
R2	0,1 W	2 · 10 ⁻⁵
R3	1 W	2 · 10 ⁻⁴
R4	10 W	2 · 10 ⁻³
R5	100 W	2 · 10 ⁻²

Quelle: EN 208 Reference: EN 208

Source: "Guide to Laser Safety", LaserVision GmbH

Dos & Don'ts for Laser Work

Don'ts (or little mistakes with BIG consequences)

- Do not directly look into beam
- Do not expose your skin to beam (use e.g. indicator cards)
- Do not open apertures/covers of microscope/system if laser emission is possible
- Do not touch laser optics or try to realign a laser if you are not authorized.
- Do not avoid safety devices (goggles, indicator cards)
- Do not wear rings, bracelets or any other reflecting materials
- Do not leave laser switched on if not necessary (long term experiments)
- Do not allow non-authorized people usage of laser systems or leave them alone with lasers switched on

Dos

- Mount laser to optical breadboard or bench before usage
- Close lab doors & laser safety curtains to protect other people
- Knock before entering a lab with flashing laser warn lamp
- Reduce laser power as much as possible for aligment procedures
- In case of any malfunction, immediately inform supervisor and laser safety officer

In Case of an Accident

- Switch off lasers if possible
- Contact first aider
- Call emergency: 112
- Turn to a doctor (eye specialist or dermatologist)
- Inform supervisor and laser safety officer

Betriebsärztlicher Dienst Apl. Prof. Dr. Henning Allmers

Dermatologie, Umweltmedizin, Gesundheitstheorie Universität Osnabrück

Sedanstr. 115

49090 Osnabrück

Phone.: 0541/3329

Room: 70/B25

Paracelsus Kliniken Augenabteilung

Am Natruper Holz 69 49076 Osnabrück

Tel.: 0541/609220 (Praxis)

Ihre Hautärzte Dr. med. Th. Rosenbach und Kollegen

Lotter Str. 58-61 49078 Osnabrück

Tel.: 0541/3 35 00-0

(Praxis)

Complacency is your Enemy!

If you are in doubt or you do not feel you are working with safe practices or equipment:

Contact your supervisor and laser safety officer!

It is your right to work safely no matter the cost or inconvenience!

Rainer Kurre

Tel.: 0541-969-7338

Email: rainer.kurre@uos.de

Web: www.ibios.uos.de

Instructions online: https://www.ibios.uos.de/Service/Safety%20Instructions.html

Thank you for your attention!!